

Evaluation of Power Consumption of Modified
Bubble, Quick and Radix Sort, Algorithm on the

Dual Processor

Ahmed M. Aliyu*1 Dr. P. B. Zirra*2

1Post Graduate Student
*1,2, Computer Science Department, Adamawa State University, Mubi

Nigeria

Abstract - Sorting is one of the fundamental operations in
computer science. Sorting refers to the arrangement of data in
some given order such as increasing or decreasing order, with
numerical data or alphabetically, with character data [7].
There are many sorting algorithms. All sorting algorithms are
problem specific. The selection of any of these algorithms
depends on the properties of data and operations performed
on them. This study is intended to determine the performance
of dual Processors on three (3) sorting algorithms (Bubble,
Quick and Radix) and measure the power consumption on
execution of each of these algorithms. The three algorithms
(Bubble, Quick and Radix sorts) were selected and modified,
by infusing random number generation and power estimation
procedures into each and then determine its order against the
unmodified algorithms. The time taken to sort the generated
random integers was then used to estimate the power
consumed by the processor. The study revealed that radix sort
takes less time and consume less power when performing the
sorting; and these were ranked in ascending order for clarity
and easy identification of better performance.

Keywords – Bubble Sort, Radix Sort, Quick Sort,
Big O, Dual Processor, Processor

I. INTRODUCTION
Sorting is one of the most important and well-studied
problems in computer science. The problem of sorting is a
problem that arises frequently in computer programming.
Many different sorting algorithms have been developed and
improved to make sorting fast. Some sorting algorithms are
simple and intuitive such as bubble sort while others such
as quick sort are complicated but produce very fast results.
The commonly used algorithms can be divided into two
classes by the complexity of their algorithm. Algorithmic
complexity is generally written in a form known as Big-O
notation, where the O represent the complexity of an
algorithm and a value n represent the size of the set the
algorithm is run against. The two classes of sorting
algorithm are O(n2), which include the bubble sort,
insertion sort, selection sort, and shell sort; and O(n log n),
which include the heap sort, merge sort and quick sort.
There is direct correlation between the complexity of an
algorithm and its relative efficiency. There is no one
sorting method that is best for every situation. Some of the
factors to be considered in choosing a sorting algorithm
include the size of the list to be sorted, the programming
effort, the number of words of main memory available, the
size of disk or tape units, the extent to which the list is
already ordered, the distribution of values and the power
consumption rate of the processor per instruction set.

II Statement of the Problem
Power consumption of software is becoming an
increasingly important issue in designing mobile embedded
systems where batteries are used as the main power source.
As a consequence, a number of promising techniques have
been proposed to optimize software for reduced Power
consumption. Such low-power software techniques require
a Power consumption model that can be used to estimate or
predict the Power consumed by software Therefore there is
a need to design a new algorithm that would consume less
power by the Microprocessor when running program
instructions.
[10] observed that bubble and quick sort takes less
Processor’s time and consumed as little as 18 watts of
Power in a single pass of sorting 500 stored random
numbers in a text file.
This study is intended to determine the performance of dual
Processors on various sorting algorithms by infusing some
factors such as random number generation and power
estimation module into existing algorithms which would
help in measuring the power consumption on execution of
each of these algorithms.

II AIM AND OBJECTIVES OF THE STUDY
The aim of this research work is to evaluate the Power
consumption of sorting algorithms on Dual Processors in
line with other specific objectives, which include:

(i) Determine which among (Radix Sort, Quick Sort,
and Bubble Sort) sorting algorithm run faster.

(ii) Determine which among the Radix Sort, Quick Sort
and Bubble Sort algorithm consume less or more
Power on usage by the dual processors.

(iii) Develop software that would implement the
proposed modified sorting algorithms.

III SCOPE OF THE STUDY
In this study the researcher had concentrate on sorting
items in an array in memory using comparison sorting
(because that's the only sorting method that can be easily
implemented for any item type, as long as they can be
compared with the less-than operator).
The following sorting algorithms had been evaluated with
power consumption measurement algorithm infused into
each. Radix Sort, Quick Sort, and Bubble Sort.
C++ Programming language was chosen for this research
because it offers high-level programming structure with
low-level features.

Ahmed M. Aliyu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 956-960

www.ijcsit.com 956

IV RELATED WORKS
A common misconception is that a radix sorting algorithm
either has to inspect all the characters of the input or use an
inordinate amount of extra time or space; however with a
careful implementation efficient implementations are
possible as shown by several researchers [3]
[2] investigated the performance of a number of string
sorting algorithms. And they concluded that radix sorting
algorithms are much faster than the most frequently used
comparison-based algorithms. On the average Adaptive
radix sort was the fastest sorting algorithm.
Reference [1] proposes a Modified Pure Radix Sort for
Large Heterogeneous Data Set. In their research they
discussed the problems of radix sort, and presented new
modified pure radix sort algorithm for large heterogeneous
data set. They optimize all related problems of radix sort
through this algorithm.
Reference [11] illustrated the importance of reducing
misses in the standard implementation of least-significant
bit first in (LSB) radix sort, these techniques
simultaneously reduce cache and TLB misses for LSB
radix sort, all the techniques propose yield algorithms
whose implementations of LSB Radix sort & comparison-
based sorting algorithms.
[3] explained the Communication and Cache Conscious
Radix sort Algorithm (C3-Radix sort). C3-Radix sort uses
the distributed shared memory parallel programming
Models.
[9] propose the high-performance parallel radix sort and
merge sort routines for many-core GPUs, taking advantage
of the full programmability offered by CUDA. Radix sort is
the fastest GPU sort and merge sort is the fastest
comparison-based sort reported in the literature. For
optimal performance, the algorithm exploited the
substantial fine grained parallelism and decomposes the
computation into independent tasks.
[9] suggested an optimization for the parallel radix sort
algorithm, reducing the time complexity of the algorithm
and ensuring balanced load on all processor.
[8] in their work “parallel Quicksort algorithm Part 1 - Run
time analysis” stated that Quicksort being such a popular
sorting algorithm, there have been a lot of different
attempts to create an efficient parallelization of it.
Another approach by [5] has been to Multiply each
sequence to be sorted into blocks that can then be
dynamically assigned to available processors . However,
this method requires extensive use of atomic FAA2 which
makes it too expensive to use on graphics processors.
According to [7] the Bubble Sort algorithm works by
continually swapping adjacent array elements until the
array is in sorted order. Every iteration through the array
places at least one element at its correct position.
Although algorithmically correct, [8] observed that Bubble
Sort is inefficient for use with arrays with a large number
of array elements and has a ܱ(݊ଶ) time complexity.

V METHODOLOGY
A. Method of data collection
For the purpose of this research work, all reference
materials are collected from reputable Journals, textbooks
and Internet. While the test data for the program would be

randomly generated from a random program to be designed
and incorporated into the final software.

B. Propose Radix Sort Algorithm
Algorithm radixSort(a, first, last, maxDigits)
// Generate Random Numbers
1: int min = 1;
2: int max = n;
3: int a = rand(min, max);
// Sorts the array of positive decimal integers a[first..last]
into ascending order;
// maxDigits is the number of digits in the longest integer.
4: Timercount() = 0
5: for (i = 1 to maxDigits)
6: { Clear bucket[0], bucket[1], . . . ,
bucket[9]
7: for (index = first to last)
8: { digit = ith digit from the right of a[index]
9: Place a[index] at end of bucket[digit]
 }
10: Place contents of bucket[0], bucket[1], . . . ,
bucket[9] into the array a
}
Timercount() = Timercount + 1
// Power Estimation
11: Begin
12: Compute the Time taking to Sort the Random numbers
13: Compute the Time (ݐ) taking to Sort the Random
numbers in an Array (CPU
 Time)
14: Multiply the Energy by the Time used in sorting Array
of Data using Equation (2)
15. end
The complexity of the proposed selection sort algorithm can
be determined as follows:
Let ܿ1 to ܿ15 represent the Cost of executing each
instruction in the algorithm and ݊	 be the running time; then
it can be derived that the total cost is: ܶ(݊) = ܿ1 + ܿ2 + ܿ3 + ܿ4 + ܿ5 × ݊ଶ 	+ ܿ6 + ܿ7 × ݊ଶ+ ܿ8 + ܿ9 + ܿ10 + ܿ12 + 	ܿ13 + ܿ14+ ܿ15		
Dropping all the Constant terms we have
 ܶ(݊) = ܿ5 × ݊ଶ + ܿ7 × ݊ଶ
 = ݊ଶ(ܿ5 + ܿ7		
 ܶ(݊) = ݊ଶ
Therefore the Order of the Proposed Radix Sort algorithm
is ܱ(݊ଶ) 	
C. Propose Quick Sort Algorithm
Algorithm quickSort(a, first, last)
// Sorts the array elements a[first] through a[last]
recursively.
// Generate Random Numbers
1: int min = 1;
2: int max = n;
3: int a = rand(min, max);
4: Timercount = 0
5: if (first < last)
6: { Choose a pivot
7: Partition the array about the pivot

Ahmed M. Aliyu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 956-960

www.ijcsit.com 957

8: pivotIndex = index of pivot
9: quickSort(a, first, pivotIndex-1) // sort Smaller
10: quickSort(a, pivotIndex+1, last) // sort Larger
11: Timercount() = Timercount + 1
// Power Estimation
12: Begin
13: Compute the Time (ݐ) taking to Sort the Random
numbers in an Array (CPU Time)
14: Multiply the Energy by the Time used in sorting Array
of Data using Equation (3)
15: Multiply the Energy by the Time used in sorting
16. end }
The complexity of the proposed selection sort algorithm can
be determined as follows:
Let ܿ1 to ܿ16 represent the Cost of executing each
instruction in the algorithm and ݊	 be the running time; then
it can be derived that the total cost is: ܶ(݊) = ܿ1 + ܿ2 + ܿ3 + ܿ4 + ܿ5 × ݊ଶ 	+ ܿ6 + ܿ7	 + ܿ	ܿ9+ ܿ10 + ܿ12 + ܿ13 + ܿ14 + ܿ15 + ܿ16		
 Dropping all the Constant terms we have
 ܶ(݊) = ܿ5 × ݊ଶ	
 ܶ(݊) = ݊ଶ

Therefore the Order of the Proposed Quick Sort algorithm
is ܱ(݊ଶ) 	
D. Propose Bubble Sort Algorithm

Bubble (Data, N)
// Here DATA is an array with N elements. This
algorithm sorts the elements in //DATA.
// Generate Random Numbers
1: int min = 1;
2: int max = n;
3: int a = rand(min, max);
4: Timercount() = 0
5: Repeat Steps 6 and 7 for K = 1 to N-1
6: Set PTR := 1 [Initialize pass pointer PTR]
7: Repeat while PTR <= N-K : [Execute Pass]
 (a) If DATA[PTR] > DATA[PTR+1], then
 Interchange DATA[PTR] and DATA[PTR+1]
 End if
(b) Set PTR := PTR+1 [End of inner loop]

[End of step 1 outer loop]
8: Timercount() = Timercout() + 1
 9: Exit.
// Power Estimation
10: Begin
11: Compute the Time (ݐ) taking to Sort the Random
numbers in an Array (CPU Time)
12: Multiply the Energy by the Time used in sorting Array
of Data using Equation (3)
13: Multiply the Energy by the Time used in sorting
14: end
The complexity of the proposed selection sort algorithm can
be determined as follows:
Let ܿ1 to ܿ14 represent the Cost of executing each
instruction in the algorithm and ݊	 be the running time; then
it can be derived that the total cost is: ܶ(݊) = ܿ1 + ܿ2 + ܿ3 + ܿ4 + ܿ5 × ݊ଶ 	+ ܿ6 + ܿ7 × ݊ଶ 		+ 	ܿ9 + ܿ10 + ܿ12 + ܿ13 + ܿ14	

 Dropping all the Constant terms we have
 ܶ(݊) = ܿ5 × ݊ଶ 	+ ܿ7 × ݊ଶ
 ܶ(݊) = ݊ଶ(c5+c7)
Therefore the Order of the proposed bubble Sort algorithm
is ܱ(݊ଶ) 	

VI. RESULTS
The results obtained from the implementation of three
selected algorithms (Bubble, Radix, and Quick) sorts using
input array size of 250, 500, 750 and 1000 as extracted
from Run program are shown in Table 1.1 and Table 1.2.
The tables show the summary of the running time and
Power Consumption respectively.

Table 1.1: Running Time Analysis of the Sorted data

Table 1.2: Power Consumption Analysis of the Sorted

data

Table 1.1 and Table 1.2 can be graphically represented as
shown in Figure 1.1 and Figure 1.2 below.

Figure 4.1: Graph showing CPU Time Measurement.

0

0.05

0.1

0.15

0.2

0.25

250
Data

500
Data

750
Data

1000
Data

CP
U

 T
im

e

Array Size

Time Performance of selected Algorithm

Bubble Sort

Radix Sort

Quick Sort

Data
element

Bubble
Sort

Radix Sort Quick Sort

250 0.099533 0.0730675 0.0626768

500 0.106327 0.0765998 0.0951078

750 0.140579 0.0681788 0.114954

1000 0.203767 0.0659055 0.156125

Data
element

Bubble
Sort

Radix Sort Quick Sort

250 0.0020736 0.00123843 0.00108063

500 0.00221515 0.0012983 0.00202357

750 0.00255598 0.00131113 0.00212877

1000 0.00377346 0.00122047 0.00283864

Ahmed M. Aliyu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 956-960

www.ijcsit.com 958

Figure 4.2: Graph showing Power Consumption

VII. DISCUSSION
Table 1.1 shows summary of the running time of the
selected sorting algorithm of the study; it is obtained by
running each of the selected algorithms for different input
elements size. It can be observed from the table that when
you increase the input size of the array, there is a
significance increase in the running time thus; indicating
that the size of an array affects the performance of bubble
sort, Radix sort and quick sort algorithms; which are all of ܱ(݊ଶ), where increasing the input size increase the running
time. And this is in conformity with the assertion of [7] and
other scholars who state that bubble sort is inefficient for
use with large array, though the running time on dual
processor is better compared to those run on single
Processor.
It can then be deduced that increasing the size of the array
by a factor (i.e. 250 elements) increases the running time
and this is a true behavior of quadratic Sort of ܱ(݊ଶ)
therefore the study revealed that Bubble, Radix and Quick
sort are quadratic in nature.
In terms of speed on a dual processor, Radix Sort tend to
perform better than the remaining sorting Algorithm under
study, from Table 1.1 it can be seen that for a large data
array of 1000 elements the algorithms under study can be
ranked in terms of speed as follows (Radix, Quick, and
Bubble Sort) with the Radix taking the lead and this is in
line with the work of [9] who’s result shows that Radix sort
and merge sort routine perform better on many-core CPU.
A table 1.2 show that the time complexity of sorting
algorithms may affect the Power usage greatly since the
time is proportional to energy consumption. The result
shows that algorithms with time complexity O (݊ଶ) may
consume a lot more power than algorithms with time
complexity O (n log n), as shown in same figure 1.2
The Result from Table 1.2 shows that for 500 data array, a
bubble sort would consume 0.140579 Watts, Contrary to
[10] whose study shows that for 500 data array, 18 watts of
power was consumed on single core processor, amounting
to 99.2% improvement when compared to what was
obtained in this study. Similarly comparing same with
result obtained by [11] whose study shows a power
consumption of 0.2521 watts on running a bubble sort
algorithm with 500 array size of random number, this

shows an improvement of 44.2% when compared with
what is obtained in this study when run on dual processor.
Similarly the Algorithms under study can be ranked
according to the power consumption if we take results for
1000 array elements from low to higher power
consumption from Table 1.2 as follows Radix, Quick Sort,
and Bubble Sort, indicating that Radix sort performs better
in terms of speed and power consumption.

VIII. CONCLUSION
This study discusses comparison based sorting algorithms.
It analyses the performance of these algorithms for
different number of elements .It then concludes that Radix
sort shows better performance than the rest while bubble
sort efficiency drastically reduces with an increase in data
size suggesting that bubble sort is not suitable for sorting
large data array. It is clear that all the sorting techniques are
not that popular for the large arrays because as the arrays
size increases both timing is slower. But generally the study
indicate that Radix Sort have faster CPU time as well as
less Power Consumption on Dual Processor even though it
have the upper bound running time ܱ(݈݊݊݃݋).

RECOMMENDATIONS
From the result obtained from this study it is recommended
that for any programmer engaging in developing a
commercial or personal software special consideration
should be given to the type of algorithm to be used after all
other factors were considered Since time is directly
proportional to the Power consumption, this research reveal
that some algorithm run faster than others and this means
those that have low CPU time tend to have less power
consumption. Among the three (3) algorithms studied,
Radix Sort tend to have favorable running time of order ܱ(݈݊݊݃݋) and optimal power consumption of less than a watt
Power drain on dual processor. Based on these the
following recommendations were made:
1. The Study should serve as a reference manual for

program developers interested in Power
management of Software.

2. For researchers interested in Algorithms efficiency
measurement.

REFERENCE

[1] Avinash, S. & Anil, K. S.. Modified Pure Radix Sort for Large
Heterogeneous Data Set IOSR Journal of Computer Engineering
(IOSRJCE), 2012.

[2] Arne, A. A. & Stefan, N. S.. Implementing Radix Sort. ACM Journal
of Experimental Algorithmics, 1998.

[3] Daniel, N. & Joseph, H.. CC-Radix: a Cache Conscious Sorting
Based on Radix Sort,11th IEEE Conference on Parallel, Distributed
& Network-BasedProcessing(Euro-PDP’03) ,2003.

[4] David, M. W. Powers, Parallel Unification: Practical Complexity,
Australasian Computer Architecture Workshop, Flinders University,
1992.

[5] David, M. W. Powers Parallelized Quicksort and Radixsort with
OptimalSpeed Proceedings of International Conference on Parallel
Computing Technologies, 2006.

[6] Gret, Z. & Evans, D. J. (2006). Adaptive Bitonic Sorting. An
Optimal Parallel Algorithm for Shared-Memory Machines.
SIAM Journal Computing, 182:216.

[7] Knuth, D.E. The Art of programming- Sorting and Searching. 2nd
Edn., Addison Wesley Press, London 780-781, . 1988.

0

0.001

0.002

0.003

0.004

250
Data

500
Data

750
Data

1000
Data

CP
U

 T
im

e

Array Size

Power Consumption Analysis

Bubble Sort

Radix Sort

Quick Sort

Ahmed M. Aliyu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 956-960

www.ijcsit.com 959

[8] Macllory, H., Norton, A., & John, T. R. Parallel Quicksort Using
Fetch-And Add.IEEE Trans. Comput., 133-138, 1993.

[9] Nadathur, S.. Designing Efficient Sorting Algorithm for
manycoregpus”,23rd IEEE International Parallel and Distributed
Processing Symposium, 2009.

[10] Oyelami, O. M.). Improving the Performance of Bubble Sort using a
Modified Diminishing Increment Sorting. Scientific Research
and Essay 1992-2248 Academic Journals, 2009.

[11] Pallav, C.. Performance Comparison of Distributive and Merge sort
as External Sorting Algorithms, Journal of Systems Software, 2007.

[12] Rajeev, R. & Naila, R.. Adapting Radix Sort to the Memory
Hierarchy , Journal of Experimental Algorithmic (JEA), pp.7-9,
2011.

[13] Tiwari, V., Malik S. & Wolfe A. Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems,pp:437-445, 1994.

Ahmed M. Aliyu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 956-960

www.ijcsit.com 960

